# Example usage:
print('Example using dims only')
config_dict = {
'control_set': ['dims'],
'input_set': ['env'],
'dataset': 'train',
'index': 0
}
arc_dict = {
'test': [{'input': [[7, 0, 7], [7, 0, 7], [7, 7, 0]]}],
'train': [
{'input': [[0, 7, 7], [7, 7, 7], [0, 7, 7]], 'output': [[0, 0, 0, 0, 7, 7, 0, 7, 7], [0, 0, 0, 7, 7, 7, 7, 7, 7], [0, 0, 0, 0, 7, 7, 0, 7, 7], [0, 7, 7, 0, 7, 7, 0, 7, 7], [7, 7, 7, 7, 7, 7, 7, 7, 7], [0, 7, 7, 0, 7, 7, 0, 7, 7], [0, 0, 0, 0, 7, 7, 0, 7, 7], [0, 0, 0, 7, 7, 7, 7, 7, 7], [0, 0, 0, 0, 7, 7, 0, 7, 7]]}
# Add more entries as needed
]
}
gp = ARCDataProcessor(config_dict, arc_dict)
info = gp.create_info()
print(info)
ins = gp.get_env_inputs_names()
print('names', ins)
inds = gp.get_env_inputs_indexes()
print('indexes', inds)
state, info = gp.get_state()
print(info)
print('fitness', gp.fitness_function(), state)
print()
for i in range(-2,-4,-1):
actions = [i]
gp.apply_actions(actions)
state, info = gp.get_state()
print(info)
# print(len(values))
print('fitness', gp.fitness_function(), state)
print()